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The prewetting phenomena in a nematic liquid crystal confined to a droplet embedded in a spherical solid
surface are discussed. This paper is based on Landau–de Gennes theory and Nobili-Durand surface energy. By
using a Maxwell construction, we find that the first-order boundary-layer transition inside of droplet which
vanishes completely below a critical radius Rc when bulk nematic isotropic transition temperature is ap-
proached from above. We obtain a narrow temperature interval above the bulk nematic-isotropic phase tran-
sition which corresponds to nematic boundary layer inside of droplet. The interval length depends on surface
potential and droplet radius. We also find that there is no critical radius for boundary transition when the
nematic-isotropic transition temperature is approached from below.
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I. INTRODUCTION

During the last few years, much attention has been paid to
the geometry of surface in a liquid crystal since interesting
phenomena arise through the combination of liquid crystal
and surface geometry. The surface phenomena in the nematic
liquid crystal were first studied by Sheng, which he called
boundary-layer transition �1�. Most theoretical studies of
such transitions have been confined to planar substrate �1–5�.

Both the density-functional theory and the Landau–de
Gennes theory lead to the result that the surface phase dia-
gram is severely restricted as a result of the nonplanar geom-
etry. Using the Landau–de Gennes theory, wetting on other
geometries such as cylinder and spherical which are dis-
persed in the nematic liquid crystal has been studied �6–9�.
The possible phases in a nematic liquid crystal confined to a
spherical droplet were analyzed in term of Landau–de
Gennes theory �10�. The density-function theory has also
been used to study the wetting behavior at hard spheres,
cylinders, and ellipsoids �11–15�.

The wetting behavior in nematic liquid-crystal droplet de-
pends on surface anchoring �orientation of the liquid-crystal
director at an interface�. The radial, axial, bipolar, twisted
bipolar, and concentric configurations are observed in the
nematic droplet. The radial and axial anchoring states relate
to the homeotropic anchoring, and other configurations cor-
respond to the planar anchoring. The director field configu-
ration of a nematic liquid crystal confined to a spherical cav-
ity within a urethane polymer is observed to transform from
a radial to axial configuration as function of radius of cavity,
temperature, anchoring strength, and external electric field
�16�.

In this work, the role of curvature on nematic wetting is
investigated in the nematic droplet. This work is based on
Landau–de Gennes theory and quadratic surface energy. We
obtain a phase diagram which presents the wetting behavior
as function of surface potential.

II. LANDAU–GINZBURG–DE GENNES THEORY

Consider a spherical droplet which is located at origin. We
want to study the role of curvature on wetting layer both for

below nematic-isotropic temperature but also for above
nematic-isotropic temperature. To study the wetting phenom-
ena, we start with the Landau–de Gennes theory. This theory
is based on second-rank tensor and traceless tensor Qij�r�
which is also called the alignment tensor �17�. The eigenvec-
tors of Qij represent the axes of main molecular orientation,
and its eigenvalues describe the amount of orientational or-
dering in each direction.

The bulk free-energy density in the Lanadu–de Gennes
theory is written as follows �18,19�:

f�Q� =
1

2
aQijQij −

1

3
bQijQjkQki +

1

4
c�QijQij�2 +

1

2
L1�Qij,k�2,

�1�

where summation over repeated indices is implied and the
comma indicates spatial derivative with respect to the spatial
coordinate xk. The first three terms describe the nematic-
isotropic phase transition. The coefficients are such that a
=��T−T��, with a, c, and L positive. The temperature T� is
the lowest temperature T, at which the isotropic phase can
exist. The presence of cubic term QijQjkQki in the homoge-
neous part implies that the nematic-isotropic phase transition
is the first order. For simplicity, one adopts the one-constant
form of the elastic energy in the last term.

In this paper, we use the anchoring of the molecules to a
bounding surface, which is quantified by Nobili-Durand free-
energy density �20�

Fs =
W

2
� d2x�Qij − Qij

�0��2, �2�

where W is the anchoring strength and Qij
0 is the preferred

order parameter at the surface. The surface free energy �Eq.
�2�� is compatible with the experimentally measured anchor-
ing in the nematic phase �4,20�. The previous works are
based on linear surface energy �9,10� although the best fits of
the experimental results are obtained from the quadratic sur-
face energy �4�.

The number of parameters is reduced by using a rescaled
order parameter �ij =Qij /s�s= 2�6b

9c � and temperature �
= 27ac

8b2 �T−T��. Furthermore, all lengths and the free energy*erfan.kadivar@pgu.ac.ir
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are given, respectively, in units of �=�L1 /cs2 and �f =cs4,
where 2�2� denotes the nematic coherence length at the
nematic-isotropic phase transition. Introducing also dimen-
sionless surface coupling parameter �= W�

L1
, which quantifies

the competition between surface energy and elastic free en-
ergy, the reduced total free energy reads as follows:

F =� d3x�1

2
��ij�ij −

�6

4
�ij� jk�kl +

1

4
��ij�ij�2 +

1

2
��ij,k�2�

+
�

2
� d2x��ij − �ij

�0��2. �3�

Consider a nematic droplet with a reduced radius R0 which is
located at origin. We restrict our attention to case that the
director field is radial everywhere. There is only a splay de-
formation, and according to symmetry of local director, we
choose the uniaxial order parameter and uniaxial preferred
order parameter as follows:

�ij = S�erierj −
1

3
�ij� , �4�

�ij
�0� = S0�erierj −

1

3
�ij� , �5�

where êr is the unit vector along the redial direction in the
spherical coordinate and S is the Maier-Saupe scaler order
parameter, which depends on the reduced distance from the
center of the particle, r. Thus the reduced total free energy
within the spherical droplet reads as follows:

F =
1

R0
2�

0

R0

r2	 fb � 6
S2

r2 + �dS

dr
�2
dr + ��S�R0� − S0�2.

�6�

with the bulk free-energy density

fb = �S2 −
1
�6

S3 +
1

3
S4. �7�

The upper and lower signs refer to the case that nematic-
isotropic phase transition is approached from above and be-
low, respectively. The second term of the integrand in Eq. �6�
can be rolled as a shift in temperature. Note that by rescaling
the free energy, we are left with four essential parameters:
temperature �, droplet radius R0, surface anchoring strength
�, and preferred order parameter S0 that completely deter-
mine the wetting behavior of liquid-crystal droplet. Accord-
ing to bulk free-energy density fb, the bulk nematic-isotropic
transition from S=0 to Sb=

�6
4 or vice versa occurs at �b

=0.125 and �†=9 /64 is superheating temperature of nematic
phase. Variation in the free energy �Eq. �6�� in order to de-
termine the order-parameter profile S�r� that minimizes
F�S�r��=�f�r�d3r leads to the following differential equa-
tion:

d2S

dr2 +
2

r

dS

dr
−

2

3
S3 +

�6

4
S2 − �� �

6

r2�S = 0, �8�

together with two boundary conditions at the interface,

�dS

dr
�

r=R0

= ��S�R0� − S0� , �9�

and far from surface �at the center of droplet�,

�dS

dr
�

r→0
= 0 or lim

r→0
S�r� = Sb, �10�

where the orientational order is uniform and where it as-
sumes the bulk value Sb, determined by minimizing the bulk
free-energy density fb of Eq. �7�. Differential Eq. �8� is
solved numerically by using the relaxation method for arbi-
trary values of S�R0�. Once order-parameter profile S�r� for
each value S�R0� is obtained, we plot  dS

dr r=R0
as a function of

S�R0�. According to Eq. �9�, the possible surface order pa-
rameters S�R0� are the intersections with the right side of Eq.
�9�. Figure 1 illustrates a graphical representation of Eq. �9�.
The full line and dashed or dotted lines relate to the left and
right sides of Eq. �9�. When multiple solutions for S�R0�
occur, the correct S�R0� is that one which gives the absolute
minimum value of the total free energy �Eq. �6��. In the case
presented in Fig. 1, three solutions are found. The middle
solution always gives a maximum in the free energy. A phase
transition between the first and third solutions occurs if areas
1 and 2 are both the same, which is the well-known Maxwell
construction �see dashed line in Fig. 1�. If area 1 is larger
than area 2 �see dotted line in Fig. 1�, the first solution gives
the absolute minimum of the total free energy or vice versa.

III. RESULT ON APPROACHING THE NEMATIC-
ISOTROPIC TRANSITION FROM ABOVE

The critical at bulk phase-transition temperature occurs
when the two extremums of  dS

dr r=R0
merge to saddle point.

We numerically obtain Rc=16.6 �see Fig. 2�b��. Below the
critical radius Rc, the boundary-layer transition between the
thin and thick films does not occur inside a liquid-crystal
droplet �Fig. 2�c��. Indeed for R0	Rc the curves are mono-
tonic functions of S�R0� �see Fig. 2�c��. In Fig. 2 the different
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FIG. 1. Graphical solution of Eq. �9� when the nematic-isotropic
transition temperature is approached from above. If the areas 1 and
2 are the same, a prewetting transition from the thin film to the thick
film solution occurs. The dots are the correct solution of Eq. �9� �see
the text for details�.
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curves of each part correspond to different temperatures. An-
other critical point on temperature, �c, for given radius �R0


Rc� occur when  dS
dr r=R0

as a function of S�R0� possesses a
saddle point �see Fig. 2�a� for �c=0.1395�. On basis of such
arguments, we plot the critical temperature as a function of
droplet radius in Fig. 3. It is noted that in the case of planar
surface, the critical temperature is the superheating tempera-
ture �†.

In Fig. 4 the variation in the surface order parameter
within an R0=35 droplet at bulk nematic-isotropic tempera-
ture as a function of anchoring strength is presented. The

various curves correspond to different values of preferred
order parameter of the surface. At S0
0.57, the first-order
transitions are manifested by jump in S�R0�. In this case,
with increasing the anchoring strength the surface order pa-
rameter within a droplet is discontinuity increasing. But it is
continuously increasing for S0	0.5775.

In Fig. 5 the change in the surface order parameter within
a droplet with as function of anchoring strength is illustrated.
The different curves correspond to different temperatures. In
the temperature interval 0.125	�	0.129, the droplet is in
the paranematic phase at small anchoring strength, but the
first-order transition between paranematic to nematic phases
occurs as � increases. At �
0.130 with increasing anchoring
strength the surface order parameter is continuously increas-
ing.

Figure 6 illustrates the relevant wetting phase diagram in
the parameter space of the surface potential when the
nematic-paranematic phase transition is approached from
above. The full line which is determined by the Maxwell
construction when areas 1 and 2 in Fig. 6 are equal, sepa-
rated the regions of complete wetting and partial wetting.
The complete wetting corresponds to a thick nematic film
which extends close to the surface inside of the droplet when
the bulk phase transition is approached with decreasing tem-
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FIG. 2. dS
dr r=R0

as a function of S�R0� for different temperatures
and different radii: �a� R0=25, �b� R0=16.6, and �c� R0=10 �see the
text for details�.
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FIG. 3. The critical temperature as a function of droplet radius
�see the text for details�.
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FIG. 4. Calculated order parameter inside of droplet surface
with radius R0=35 as function of anchoring for different preferred
order parameters at bulk nematic-isotropic transition temperature �b

�see the text for details�.
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perature. The length of full line decreases with a decrease in
droplet radius until a critical radius Rc that the length of full
line completely vanishes. The dashed line is the projection of
a critical line on S0 ,� plane at the bulk nematic-isotropic
phase-transition temperature. The confined region between
the dashed and full line defines the prewetting surface. When
crossing this surface with decreasing temperature, the order-
parameter profile jumps from the thin film to thick film. With
crossing the full line a first-order boundary-layer transition
inside of droplet surface occurs. The dashed and full line
meet each other in a tricritical point that the coordinate of it
in the S0 ,� plane depends on droplet radius. This point is
indicated by a filled circle.

IV. DISCUSSION AND CONCLUSIONS

The influence of surface curvature on the prewetting on
the nematic wetting behavior inside of droplet has been stud-
ied using the Landau–de Gennes theory and quadratic sur-
face energy. We restrict our attention to the strong homeotro-
pic anchoring, i.e., director field is radial everywhere inside
of droplet which emerges radially from the central point de-
fect. By using the Maxwell construction, we determine the
first-order boundary-layer transition which disappears com-
pletely below the critical radius when a bulk nematic-
isotropic phase-transition temperature is approached from
above. The value of critical radius is about 16.6 in the res-
caled frame. Fukuda et al. �9� found that there is the critical
radius for a solid spherical particle which is dispersed in
nematic liquid crystal above bulk nematic-isotropic transi-
tion temperature. They reported critical radius about 28.9 in
the our scale. By using deuterium NMR measurements, the
critical radius in polymer-dispersed liquid crystals �PDLCs�
with bipolar droplets was observed by Golemme et al. �21�.
They reported that the critical diameter of bipolar liquid-
crystal droplet is between 0.35 and 0.035 �m.

In the case that bulk nematic-isotropic phase-transition
temperature is approached from below by decreasing the
droplet radius, the two extremums of  dS

dr r=R0
do not merge to

the saddle point, so the boundary-layer transition occurs for
each radius �see Fig. 7�.
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FIG. 6. Wetting phase diagram for nematic wetting when bulk
nematic-isotropic transition temperature �b is approached from
above. The dashed line is the projection of prewetting line on the
S0 ,� plane at �b. The filled circle indicates a tricritical point for the
wetting transitions �see the text for details�.
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FIG. 7.  dS
dr r=R0

as a function of S�R0� for different radii when
the bulk nematic-isotropic phase-transition temperature is ap-
proached below. The full line: R0=30; dashed line: R0=20; and
dotted line: R0=6.
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FIG. 5. Calculated order parameter inside of droplet surface
with radius R0=35 as function of anchoring for different tempera-
tures �see the text for details�.
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